备案号: J2096-2015

中华人民共和国石油化工行业标准

SH/T **3520—2015** 代替 SH/T 3520—2004

石油化工铬钼钢焊接规范

Welding specification of chrome molybdenum steel in petrochemical industry

2015-04-30 发布

2015-05-01 实施

目 次

前言]]]
1 范围	1
2 规范性引用文件	·····1
3 术语和定义	2
4 材料	2
4.1 一般规定	 2
4.2 钢材	
4.3 焊接材料	·····2
5 焊工资格和焊接工艺评定	3
6 焊前准备	 3
6.1 坡口制备	3
6.2 组对与定位	
7 焊接工艺	
7.1 一般规定	
7.2 焊接材料选用和准备	
7.3 预热······ 7.4 焊接······	
8 焊接检验	
8.1 外观检查······ 8.2 无损检测·····	
9 返修	
10 焊后热处理	
附录 A(资料性附录)国内外铬钼钢钢号、化学成分和力学性能····································	9
附录 B(资料性附录)部分铬钼钢焊接材料的选用·······	
附录 C(资料性附录)国内外铬钼钢焊材化学成分及力学性能····································	
本规范用词说明·····	·····26
附: 条文说明·····	27

Contents

Foreword
1 Scope
2 Normative references·····
3 Terms and definitions 2
4 Material ······
4. 1 General requirements 2
4. 2 Steel······2
4. 3 Welding material ······
5 Welder and Welding procedure qualifications
6 Welding proparation
6. 1 Bevel processing·····
6. 2 Joint assembly and positioning ·····
7 Welding procedure ————————————————————————————————————
7. 1 General requirements
7. 2 Welding material selection and preparation
7. 3 Preheat·····
7. 4 Weld
8 Welding inspection
8. 1 Visual examination ······
8. 2 NDT
9 Weld repair ······
10 PWHT
Annex A (Informative) Chemical composition and mechanical properties of ASTM standard part of the materials
Annex B (Informative) Forgings and castings used imported materials19
Annex C (Informative) Selection of different steels welding materials2
Explanation of wording in this specification26
Add: Explanation of articles 27

前 言

根据中华人民共和国工业和信息化部《2012 年第二批行业标准制修订计划》(工信厅科[2012]119号)的要求,规范编制组经广泛调查研究,认真总结实践经验,参考有关国际标准和国外先进标准,并在广泛征求意见的基础上,修订本规范。

本规范共分10章和3个附录。

本规范的主要技术内容是: 材料、焊工资格和焊接工艺评定、焊前准备、焊接工艺、焊接检验、 返修、热处理。

本规范是在 SH/T 3520—2004《石油化工铬钼耐热钢焊接规程》的基础上修订而成,修订的主要技术内容是:

- ——扩大了适用范围:
- ——增加了C-Mo钢的术语定义和焊接、热处理要求:
- ——增加了铸造管件、阀门坡口的无损检测要求;
- ——增加了9Cr-1Mo-V材料的后热及热处理特殊要求;
- ——修订了材料的预热、热处理温度及时间范围;
- ---修订和补充了资料性附录。

本规范由中国石油化工集团公司负责管理,由中国石油化工集团公司施工技术淄博站负责日常管理,由北京燕华工程建设有限公司负责具体技术内容的解释。执行过程中如有意见和建议,请寄送日常管理单位和主编单位。

本规范日常管理单位:中国石油化工集团公司施工技术淄博站

通讯地址: 山东省青岛市黄岛区漓江西路 677 号

邮政编码: 266555

电 话: 0532-55681827

传 真: 0532-58681000

本规范主编单位:北京燕华工程建设有限公司

通讯地址:北京市 276 信箱

邮政编码: 102502

本规范参编单位: 中石化胜利油建工程有限公司

山东泰思特检测有限公司

本规范主要起草人员:苏良骥 任鹏举 张立芳 姜俊荣 汤日光 张贤俊 本规范主要审查人员:吉章红 葛春玉 吴忠宪 李永红 段 瑞 张桂红 李雪梅 王一帆 胡联伟 张永明 袁 永 赵秀兰 张立平 刘知跃

本规范 1991 年首次发布, 2004 年第 1 次修订, 本次为第 2 次修订。

石油化工铬钼钢焊接规范

1 范围

本规范规定了铬钼钢和碳钼钢材料、焊工资格和焊接工艺评定、焊前准备、焊接工艺、焊后热处理、焊接检验及返修的要求。

本规范适用于石油化工、天然气化工、煤化工铬钼钢和碳钼钢管道和设备的焊条电弧焊、钨极气体保护焊、熔化极气体保护焊和埋弧焊等焊接方法的焊接施工。

2 规范性引用文件

下列文件对于本规范的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

- GB 150 压力容器
- GB 713 锅炉和压力容器用钢板
- GB/T 985.1 气焊、焊条电弧焊、气体保护焊和高能束焊的推荐坡口
- GB/T 985.2 埋弧焊的推荐坡口
- GB/T 3375 焊接术语
- GB/T 5118 热强钢焊条
- GB 5310 高压锅炉用无缝钢管
- GB 6479 高压化肥设备用无缝钢管
- GB/T8110 气体保护电弧焊用碳钢、低合金钢焊丝
- GB 9948 石油裂化用无缝钢管
- GB/T 12470 埋弧焊用低合金钢焊丝和焊剂
- GB/T 16253 承压钢铸件
- GB 50484 石油化工建设工程施工安全技术规范
- GB 50517 石油化工金属管道工程施工质量验收规范
- SH 3501 石油化工有毒、可燃介质钢制管道工程施工及验收规范
- SH/T 3517 石油化工钢制管道工程施工技术规程
- SH/T 3554 石油化工钢制管道焊接热处理规范
- NB/T 47008 承压设备用碳素钢和合金钢锻件
- NB/T 47013 承压设备无损检测
- NB/T 47014 承压设备焊接工艺评定
- NB/T 47015 压力容器焊接规程
- NB/T 47018 承压设备用焊接材料订货技术条件
- JB/T 3223 焊接材料质量管理规程
- JB/T 10087 汽轮机承压铸钢件技术条件
- HG/T 2537 焊接用二氧化碳
- TSG Z 6002 特种设备焊接操作人员考核细则

SH/T 3520-2015

3 术语和定义

GB/T 3375 和 NB/T 47014 确立的及以下术语和定义适用于本规范。

3. 1

铬钼钢 Cr-Mo steel

高温下具有良好的化学稳定性和较高强度, Cr 含量为 0.5%~10%并含 Mo 的合金钢。

3. 2

碳钼钢 C-Mo steel

在碳素钢基础上加入 0.25%~0.65%Mo 元素,提高高温蠕变强度的合金钢。

4 材料

4.1 一般规定

- 4.1.1 钢板、钢管、管件、法兰及焊接材料等应具有制造厂的质量证明文件,并应符合国家现行标准、设计文件和订货技术条件的规定。材料在使用前应核对其材质、牌号和规格。
- 4.1.2 当材料有下列情况之一时,不得使用:
 - a) 质量证明文件特性数据不符合产品标准及订货技术条件或对其有异议;
 - b) 实物标识与质量证明文件标识不符:
 - c) 要求复验的材料未经复验或复验不合格。

4.2 钢材

- 4.2.1 钢材质量应符合下列标准的规定:
 - a) 铬钼钢钢板和钢带应符合 GB 713 和 GB 150 的规定:
 - b) 铬钼钢和碳钼钢无缝钢管应符合 GB 5310、GB 6479 及 GB 9948 的规定;
 - c) 铬钼钢锻件应符合 NB/T 47008 的规定。
- 4.2.2 钢板、钢管、管件、法兰等材料经验收合格后应做合格标记。入库贮存应按不同种类、材质、 规格分别放置,妥善保管。
- 4.2.3 常用国内外铬钼钢钢号、化学成分和力学性能参见附录 A。
- 4.2.4 材料在使用前应进行外观质量检查,并符合下列要求:
 - a) 表面不得有裂纹、折叠、发纹、夹层、结疤等缺陷;
 - b) 表面锈蚀、凹陷、划痕及其他机械损伤的深度不应超过相应产品标准允许的厚度负偏差;
 - c) 有符合产品规定的标识。
- 4.2.5 材料表面局部存在缺陷时,可以予以消除。但缺陷消除后减薄量不应超过材料厚度负偏差。

4.3 焊接材料

- 4.3.1 焊接材料应符合以下规定:
 - a) 焊条应符合 GB/T 5118 的规定;
 - b) 气体保护电弧焊用焊丝应符合 GB/T 8110 的规定:
 - c) 埋弧焊用焊丝和焊剂应符合 GB/T 12470 的规定。
- 4.3.2 用于承压设备的焊接材料尚应符合 NB/T 47018 的规定。
- 4.3.3 钨极气体保护焊宜选用铈钨极。
- **4.3.4** 焊接用氩气应符合 GB/T 4842 的规定,其纯度不应低于 99.99%, 当瓶装氩气的压力低于 0.5MPa 时,应停止使用。
- **4.3.5** 熔化极气体保护焊采用的二氧化碳气体应符合 HG/T 2537 的规定,其纯度应不低于 99.5%,含水量应不超过 0.005%,使用前应预热和干燥。当瓶内气体压力低于 0.98MPa 时,应停止使用。

5 焊工资格和焊接工艺评定

- 5.1 特种设备施焊的焊工应按 TSG Z 6002 的规定考核合格,取得合格证后方可承担相应项目的焊接工作。
- 5.2 焊接工艺评定应符合 NB/T 47014 的规定, 当设计文件有特殊要求时, 尚应符合设计要求。

6 焊前准备

6.1 坡口制备

- 6.1.1 焊接坡口可根据设计文件要求或工艺条件选用标准坡口或自行设计,坡口形式及尺寸应按便于操作、避免产生缺陷、焊缝填充金属尽量少、熔合比尽量小、减少焊接变形与残余应力等原则选用。标准坡口形式和尺寸宣符合 GB/T 985.1、GB/T 985.2 的规定。
- 6.1.2 切割及坡口加工宜采用机械方法。当采用火焰切割或加工坡口时,应采用冷加工法去除影响焊接质量的表面层。
- 6.1.3 坡口加工后应进行外观检查,坡口表面不得有裂纹、分层和夹渣等缺陷。
- **6.1.4** 采用热加工方法的坡口和铸造管件、阀门的坡口应进行 100%表面无损检测, 检测执行 NB/T 47013 的要求, I 级合格。

6.2 组对与定位

- 6.2.1 设备组对应符合 GB 150 和 NB/T 47015 的规定。
- 6.2.2 管道组对应符合 GB 50517 的规定。
- 6.2.3 不同壁厚的对接接头,应采用机械方法对厚壁侧进行加工处理,加工方法可按下列方法执行:
 - a) 壁厚差小于或等于 2mm 时可用锉刀或角向磨光机加工;
 - b) 壁厚差大于 2mm 时可用机床或角向磨光机加工。
- **6.2.4** 当管道接头两侧壁厚不同、且内壁差大于 1mm 或外壁差大于 2mm 时,应按图 6.2.4 的要求对厚壁侧进行加工处理。

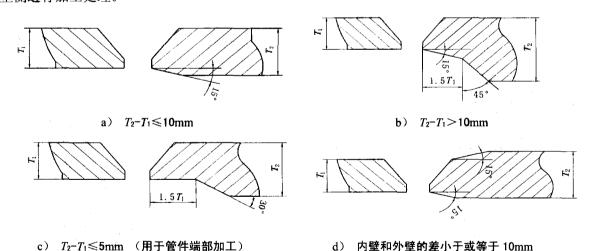


图 6.2.4 不同壁厚管子和管件加工

- 6.2.5 组对前,应清除坡口面及其两侧母材内外表面不小于 20mm 范围内的氧化物、油污、熔渣、毛刺及其他有害杂质。
- 6.2.6 除设计文件另有规定外,焊接接头不得进行强力组对定位。
- 6.2.7 组对定位后,检查坡口间隙、错边量、棱角度等,检查结果应符合设计、相关标准和工艺文件的要求。

- 6.2.8 熔入永久焊缝内的定位焊缝应符合下列规定:
 - a) 定位焊缝应有评定合格的焊接工艺,焊工应符合 5.1 的规定;
 - b) 定位焊缝的长度、厚度和间距应能保证在正式焊接过程中不开裂;
 - c) 管道对接定位焊缝每道焊口不少于 2 处,焊缝的长度宜为 10mm~15mm,厚度不超过壁厚的 2/3:
 - d) 设备定位焊缝尺寸宜符合表 6.2.8 的规定:

表 6.2.8 设备定位焊缝尺寸推荐值

单位为 mm

焊件厚度	焊缝厚度	焊缝长度	间距
≤20	小于或等于壁厚的 70%, 且不小于 6	>20	<500
>20	≥8	>30	≤ 500

- e) 定位焊缝应平滑过渡到母材,焊缝两端需磨削成斜坡并保证焊透及熔合良好,且无气孔、夹 渣等缺陷;
- f) 定位焊缝应均匀分布,正式焊接时,起焊点应在两定位焊缝之间。
- 6.2.9 组对的工卡具不宜焊接在母材上, 当需要焊接在母材上时, 应符合下列规定:
 - a) 工卡具的材质应为低碳钢材料或与母材相同或同组别,采用与母材匹配的焊接材料;
 - b) 母材焊接要求预热时,工卡具焊接也应预热,预热温度应为焊接预热温度的上限,预热范围 从工卡具各边向外不小于 3 倍母材壁厚,且不小于 50mm;
 - c) 组对时所使用的工卡具应在耐压试验之前拆除。需预拉伸或预压缩的焊接接头,应在整个焊接及热处理完毕并经检验合格后拆除,拆除过程不得对母材产生热影响。其余焊接接头的工卡具应在热处理之前拆除;
 - d) 不得用敲打或掰扭的方法拆除工卡具,拆除时不应损伤母材,工卡具拆除后应将残留焊疤打磨修整至与母材表面齐平:
 - e) 工卡具拆除后,修磨部位应按 NB/T 47013 进行表面无损检测, I级合格。

7 焊接工艺

7.1 一般规定

- 7.1.1 焊接除应符合本规范外, 尚应符合设计文件及国家现行相关标准的规定。
- 7.1.2 焊接施工的安全技术要求和劳动保护应符合 GB 50484 的有关规定。
- 7.1.3 施焊前,应根据合格的焊接工艺评定报告编制焊接工艺文件,并按规定审批后实施。
- 7.1.4 当焊接环境出现下列任一情况时,未采取防护措施不得施焊:
 - a) 气体保护焊时风速大于 2m/s, 焊条电弧焊时风速大于 8m/s;
 - b) 相对湿度大于 90%;
 - c) 雨、雪环境。
- 7.1.5 焊件温度低于 10℃时, 应预热到 10℃以上。
- 7.1.6 焊接过程中, 所用焊接设备及辅助设备应处于完好状态。
- 7.1.7 焊接接头完成焊接后应在焊缝附近标识焊缝编号、施焊焊工代号等,并在设备焊缝布置图或管道轴测图中记录。

7.2 焊接材料选用和准备

- 7.2.1 焊接材料的选择应根据母材的化学成分、力学性能、使用条件和施焊条件等综合考虑,并符合以下要求:
 - a) 选用与被焊材质化学成分相当的焊接材料,或符合设计文件规定的技术条件;

- b) 熔敷金属的抗拉强度值应不低于母材标准抗拉强度值的下限;
- c) 具有良好的焊接工艺性能:
- d) 不同铬钼钢、不同碳钼钢的焊接及铬钼钢与碳钼钢的焊接,宜按照合金成分较低的一侧选择 焊接材料。
- 7.2.2 铬钼钢焊接推荐选用的焊接材料参见附录 B,国内外焊接材料化学成分及力学性能对照参见附录 C。
- 7.2.3 焊接材料验收合格并标识后入库储存,储存要求应符合 JB/T 3223 规定。
- 7.2.4 焊接材料的使用应符合下列规定:
 - a) 使用前应按工艺文件和产品说明书的规定对焊条进行烘干,焊剂的烘干按焊接材料说明书的要求确定,常用焊条的烘干可参考表 7.2.4 的规定;

•			
焊材型号 (标准)	烘干温度	恒温时间 h	保温温度 ℃
E××15-× (GB/T5118)	350~400	1~2	100~150

表 7.2.4 焊条的推荐烘干参数

- b) 焊条经烘干领出后应放置在保温桶中随用随取,焊条在保温桶中放置时间超过 4h 时应重新烘干,累计烘干次数不宜超过三次;
- c) 焊丝表面若有油污,使用前应进行清理;
- d) 焊接过程中未熔化的埋弧焊焊剂可以回收再使用,在重新使用前,应将熔渣和其他杂物分离, 并加入不少于 50%的新焊剂均匀混合:
- e) 焊接公称成分 9Cr-1Mo-V 钢的焊条、埋弧焊焊剂不得重复烘干使用;
- f) 焊接材料在使用过程中应保持识别标识。
- 7.2.5 当现场施工条件限制不能进行焊后热处理时,经设计或建设单位同意,可采用奥氏体或镍基材料焊接。在设计温度不高于 315℃时可选用高铬镍(25%Cr-13%Ni)奥氏体焊接材料,在设计温度高于 315℃时可选用镍基材料。

7.3 预热

7.3.1 施焊前应根据钢材的交货状态、淬硬性、焊件厚度、结构刚性、焊接方法及焊接环境等因素综合考虑预热温度。常用铬钼钢和碳钼钢的预热温度见表 7.3.1。

表 7.3.1 预热温度

母材类别	名义壁厚 mm	母材抗拉强度下限值 MPa	预热温度
C-Mo 钢和 Cr≤0. 5%的 Cr-Mo 钢	≥13	<450	≥95
C-MO ՔԻՐՔԻ CI≪O. ЭЖНУ CI-MO ՔԻ	全部	>450	■
0. 5% <cr≤2%的 cr-mo="" td="" 钢<=""><td>全部</td><td>全部</td><td>≥150</td></cr≤2%的>	全部	全部	≥150
2. 25%≤Cr≤10%的 Cr-Mo 钢	全部	全部	≥200

注 1: 当采用钨极气体保护焊打底时,焊前预热温度可按规定的下限温度降低 50℃。

注 2: 对于公称成分 1Cr-0.5Mo-V 和 1.5Cr-1Mo-V 的材料, 其预热温度≥200℃。

7.3.2 不同铬钼钢、不同碳钼钢的焊接及铬钼钢与碳钼钢的焊接,应按合金成分较高的材质的预热要求进行预热。

SH/T 3520-2015

7.3.3 管道预热宜采用电加热法,并应在坡口两侧均匀进行,防止局部过热;预热范围应为坡口中心两侧各不小于壁厚的 5 倍,且不小于 100mm;加热区以外 100mm 范围应予以保温。设备的预热及测温要求应符合 NB/T 47015 的规定。

7.4 焊接

- 7.4.1 焊件达到预热温度后应及时进行焊接,焊接过程中道间温度应不低于预热温度。
- 7.4.2 管道底层焊道宜采用钨极气体保护焊方法进行焊接。对铬含量公称成分大于 2.25%的焊件进行钨极气体保护焊打底时,焊缝背面应充惰性气体保护,对于公称成分为 9Cr-1Mo 和 9Cr-1Mo-V 的材料,至少焊接两层,方可终止背面惰性气体保护。
- 7.4.3 采用钨极气体保护焊焊接时,焊丝前端应置于保护气体中。
- 7.4.4 多层焊时每层的接头处应错开,并清理道间和层间影响焊接质量的杂质。
- 7.4.5 在焊缝厚度达到 10mm 或壁厚的 25%中较小值之前不允许中断焊接。中断焊接时,对于焊缝厚度达到表 10.1 规定的热处理要求时,应进行后热,其他应采取保温缓冷措施,9Cr-1Mo-V 的材料尚应符合 7.4.7 的规定。再次焊接前应检查焊道表面,目视检查确认无裂纹后,方可按原工艺要求继续施焊。
- 7.4.6 若不能立即进行焊后热处理,焊接完毕后应立即进行后热,后热温度宜为 200℃~350℃,保温时间不应少于 30min。有预热(包括环境要求进行的预热)无焊后热处理要求的接头,焊后采取保温缓冷的措施。
- 7.4.7 母材为 9Cr-1Mo-V 的焊件焊后应采用以下两种冷却及热处理方式之一:
 - a) 将焊件冷却到80℃~100℃,进行焊后热处理;
 - b) 将焊件冷却到 80℃~100℃,进行后热,后热温度宜为 300℃~350℃,保温时间宜为 2h,冷却到室温后,进行焊后热处理。
- 7.4.8 焊接时引弧起焊点应在两定位焊缝之间,收弧时应将弧坑填满,并用砂轮机将收弧处修磨平整。
- 7.4.9 防止地线、电缆线、焊钳等与焊件打弧。电弧擦伤处应进行修磨,使其均匀过渡到母材表面, 修磨的深度不应超过材料厚度的负偏差。

8 焊接检验

8.1 外观检查

- 8.1.1 焊后应将焊缝表面上的熔渣、飞溅等清理干净,并进行目视检测,检测标准执行 NB/T 47013。 并应符合下列规定:
 - a) 焊缝成型良好;
 - b) 焊缝表面不得有气孔、夹渣、弧坑、凹坑及未焊满等缺陷:
 - c) 焊接接头表面不允许有裂纹;
 - d) 焊缝与母材圆滑过渡。
- 8.1.2 除本规范 8.1.1 条规定外,压力容器焊缝外观质量应符合 GB 150 的规定,有毒、可燃介质管道焊缝外观质量应符合 SH 3501 的规定,其他管道焊缝外观质量应符合 GB 50517 的规定。

8.2 无损检测

- 8.2.1 管道和设备的焊接接头在焊缝外观检查合格后进行无损检测,无损检测执行 NB/T 47013 的规定。
- **8.2.2** 压力容器焊接接头无损检测的要求应符合 GB 150 的规定,管道焊接接头无损检测的要求应符合 SH/T 3517 的规定。
- 8.2.3 焊接接头热处理完成后,应对 1Cr-0.5Mo-V 和 1.5Cr-1Mo-V 的焊接接头进行不少于10%的超声检测或射线检测,超声检测 I 级合格,射线检测 II 级合格,并对焊接接头表面进行 10%的表面检测, I 级合格,检测标准执行 NB/T47013 的规定。

9 返修

- 9.1 缺陷消除可采用砂轮打磨或碳弧气刨方法。磨槽或刨槽需修整成适合补焊的形状,并经渗透或磁粉检测确认缺陷已被清除后方可补焊。
- 9.2 返修部位应按原检测方法进行检测。
- 9.3 同一部位的返修次数不宜超过2次。2次以上返修时,应制定返修工艺,并应经施工单位项目技术负责人批准。
- 9.4 对已完成热处理的焊接接头进行返修时,返修后应重新进行热处理。

10 焊后热处理

10.1 焊后热处理工艺应在焊接或热处理工艺文件中规定,并经焊接工艺评定验证。除设计文件另有规定外,设备的热处理应执行 GB 150 和 NB/T 47015 的规定,管道的热处理宜执行表 10.1 的规定。

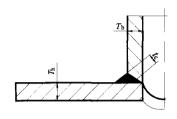
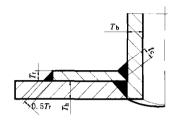

母材类别	名义厚度 δ	碳含量	热处理温度	保温时间	相应焊后热处理厚度下,最短保温时间 h				
	mm	%	℃	min/mm	≤50 mm	50mm~125mm	>125mm		
С-Мо	≤16 ^a	≤0.25	600~650	2. 4					
C MIO	>16 ^a	全部	000 -030	2. 1					
Cr≤0. 5%	≤16 ^a	≤0.25	600~650	2. 4					
C1~0.3%	>16 ^a	全部	000 000	2. 1					
0. 5% <cr≤2%<sup>b</cr≤2%<sup>	>13 ^a	≤0.15	650~700	2. 4	8	$2 + \frac{\delta^{-}}{10}$	50		
0. 5% CI < 2%	全部	>0.15	030 - 100	2.4	$\frac{\delta}{25}$,最少 0.5		0		
2. 25%≤Cr≤3%	>13 ^a	C ≤0. 15	700~760	2. 4					
2. 23% (C1 < 3%	全部	C>0. 15	700~760	2.4					
3% <cr≤10%< td=""><td>全部</td><td>全部</td><td>700~760</td><td>2, 4</td><td></td><td></td><td colspan="3"></td></cr≤10%<>	全部	全部	700~760	2, 4					
9Cr-1Mo-V	全部	全部	730~775°	2.4		$\frac{\delta}{25}$	$5 + \frac{\delta^- 125}{100}$		

表 10.1 管道焊后热处理规范


- a 对于特定腐蚀介质的管道,全部厚度应根据设计要求进行热处理。
- b 对于公称成分 1Cr-0.5Mo-V 和 1.5Cr-1Mo-V 的材料, 当壁厚≥6mm 时, 焊件进行热处理, 热处理温度为 720℃~750℃。
- ° 当名义厚度≤13mm 时,热处理温度最低可降为 720℃。
- 10.2 不同合金成分铬钼钢之间的焊接接头的热处理温度应选取合金含量高者的下限。
- 10.3 焊后热处理可采用整体热处理或局部热处理的方法。热处理应按确定的热处理工艺参数控制升温、恒温和降温过程。当设计无规定时,管道热处理应符合下列要求:
 - a) 升温至 300℃后,加热速度按 5125/δ (℃/h) 计算,且不大于 220℃/h;
 - b) 恒温期间各测温点的温度均应在热处理温度规定的范围内,其偏差不得超过 50℃;
 - c) 恒温后的冷却速度应按 $6500/\delta$ (\mathbb{C}/h) 计算,且不大于 260 \mathbb{C}/h 。冷至 300 \mathbb{C} 后可自然冷却。
- 10.4 管道热处理加热方法、加热宽度、保温宽度和测温点的布置等要求执行 SH/T 3554 的规定。
- 10.5 不同厚度的管道进行焊后热处理时, 热处理厚度为焊接接头处较厚的工件厚度, 但下列情况除外:
 - a) 支管连接时,热处理厚度应为主管或支管厚度,而不计入支管连接件(包括整体补强或非整体补强件)的厚度。但如果任一截面上支管连接的焊缝厚度大于表 10.5 所列厚度的 2 倍时,应进行焊后热处理。支管连接的焊缝厚度计算应符合表 10.5 规定:

衣 10.0	文官迁接结构	的焊缝厚度 —————	
形式			焊缝厚度

支管连接结构形式	焊缝厚度
焊接支管(安放式)见图 10.5 a)	$T_{ m b}$ + $t_{ m c}$
焊接支管 (插入式) 见图 10.5b)	$T_{ m h}^+ t_{ m c}$
补强圈补强的焊接支管(插入式)见图 10.5c)	$T_{\rm h} + T_{\rm r} + t_{\rm c}$

a) 安放式

b) 插入式

c) 插入式 (带补强圈)

 t_c ——角焊缝的计算有效厚度,取 0.7 T_b 或 6.4mm 中的小者。

Tb——支管名义厚度。

Th——主管名义厚度。

T_r——补强圈或鞍形补强件的名义厚度。

图 10.5 支管连接焊接接头形式

- b) 对用于平焊法兰、承插焊法兰、公称直径小于等于 50mm 的管子连接角焊缝和螺纹接头的密 封焊缝、以及管道支吊架与管道的连接焊缝,如果任一截面的焊缝厚度大于表 10.1 所列厚度 的 2 倍时,应进行焊后热处理。但当焊缝厚度小于或等于 13mm 时,如果预热温度不低于表 7.3.1 推荐的最低值, 且母材碳含量小于等于 0.15%, 则任意厚度的母材都不需要进行热处理。
- 10.6 焊后热处理自动记录曲线应符合焊后热处理工艺要求。
- 10.7 硬度检验应符合下列规定:
 - a) 管道焊接接头焊后热处理后应进行硬度检验,检验比例为 100%。每个接头的硬度检验应不少 于1处,每处应包括焊缝、热影响区,对于异种钢接头,应包括双侧热影响区;
 - b) 硬度值不得超过表 10.7 的规定。异种钢焊接时,焊缝金属硬度值可符合合金成分较高的母 材合格指标:

表 10.7 焊接接头硬度检验合格标准

母材类别	硬度合格指标 HB
С-Мо	≤225
Cr≤0. 5%	≤225
0. 5% <cr≤2%<sup>a</cr≤2%<sup>	≤225
2. 25%≤Cr≤3%	≤241
3% <cr≤10%<sup>b</cr≤10%<sup>	≤241

对于公称成分 1Cr-0.5Mo-V 和 1.5Cr-1Mo-V 的材料, 硬度合格指标为 HB≤241。

c) 设备焊接接头的硬度应符合设计规定。

b 对于公称成分 9Cr-1Mo-V 的材料,硬度合格指标为:工艺管道 HB≤248,公用物料管道 HB≤300。

所 录 A

(资料性附录)

表 A.1 给出了国内外常用铬钼钢钢号;表 A.2 给出了国内外常用铬钼钢管化学成分和力学性能;表 A.3 给出了国内常用铬钼钢管的化学成分和 常温力学性能;表 A.4 给出了国内常用铬钼钢板的化学成分和力学性能;表 A.5 给出了国外铬钼钢板的化学成分及力学性能;表 A.6 给出了常用铬 钼钢锻件的化学成分及力学性能;表 A.7 给出了常用铬钼钢铸件的化学成分及力学性能。

表 A.1 国内外常用铬钼钢钢号对照

			1		· -		$\overline{}$				
	<u> </u>	SIf	SB46M SB49M	SCMV1	SCMV2	SCMV3		SCMV4	SCMV6	l	
4	钢板	ASTM	A204 Gr.A A204 Gr.B A204 Gr.C	A387 Gr.2	A387 Gr. 12	A387 Gr.11		A387 Gr. 22 A387 Gr.22L	A387 Gr.5	A387 Gr.9	A387 Gr.91
H	員	SIL	STBA12 STFA12	STBA20 STPA20	STBA22 STFA22 STPA22	STBA23 STFA23 STPA23		STBA24 STFA24 STPA24	STBA25 STFA25 STPA25	STBA26 STFA26	_
	剱	ASTM	A335-P1 A209-T1 A250-T1	A213-T2 A335-P2	A213-T12 A335-P12	A199-T11 A335-P11	1	A199-T22 A213-T22 A335-P22	A199-T5 A213-T5 A335-P5	A199-T9 A213-T9 A335-P9	A199-T91 A213-T91 A335-P91
内	剱 板	GB/JB	- 1	i	15CrMoR	14Cr1MoR	12Cr1MoVR	12Cr2Mo1R	I	I	l
H	纲 管	ВЭ	15MoG 20MoG	12CrMo	15CrMo 15CrMoG	12Cr1Mo	12Cr1MoVG	12Cr2Mo	12Cr5Mo	12Cr9Mo	10Cr9Mo1VNbN
	公称成分		C-Mo	0. 5Cr-0. 5Mo	1Cr-0. 5Mo	1. 25Cr-0. 5Mo	1Cr-0. 5Mo-V	2. 25Cr-1Mo	5Cr-0. 5Mo	9Cr-1Mo	9Cr-1Mo-V

表 A. 2 国内外常用铬钼钢管化学成分和力学性能对照

						化学成分	1.3							力学性能	碧凯	
公称成分	倒名	風雨	٢	Ž	i.	v.	۵	ځ	Σ	>	抗拉强度 R _m	度 R _m	下屈服	下屈服强度 ReL	4(纵向/檑向)	冲击吸收能量 KV(纵向/楠向)
)		.)	1	j			MPa	kgf/mm ²	MPa	kgf/mm ²	38	I I
	20MoG	#	0. $15 \sim 0.25$	$0.40 \sim 0.80$	0. $17 \sim 0.37$	≤0.015	≤0.025	1	0. $44 \sim 0.65$	- d	415~665	I	>220	ı	≥22/20	≥40/27
C-Mo	A335-P1	業	$0.10 \sim 0.20$	$0.30 \sim 0.80$	$0.10 \sim 0.50$	≤0.025	$\leq 0.025 \leq 0.025$	-	0. $44 \sim 0.65$	1	>380	≥55	≥205	≥30		l
	STBA12 STFA12	Ш	0. $10 \sim$ 0. 20	$0.30 \sim 0.80$	0. $10 \sim 0.50$	≤0.035	≤0.035 ≤0.035		0. $44 \sim 0.65$	ı	1	>39	I	≥21		
	12CrMo	# .	$0.08 \sim 0.15$	$0.40 \sim 0.70$	$0.17 \sim 0.37$	≤0.015	≤0.025	0. $40 \sim 0.70$	0. $40 \sim 0.55$	1	410~ 560	1	≥205	ı	≥21/19	≥40/27
0. 5Cr-0. 5Mo	A213-T2 A335-P2	*	0. $10 \sim$ 0. 20	$0.30 \sim 0.61$	0. $10 \sim 0.30$	≤0.025	≤0, 025	$0.50 \sim 0.81$	0. $44 \sim 0.65$		≥380	≥55	≥205	>30	l	ì
	STBA20 STPA20	В	0. $10 \sim 0.20$	$0.30 \sim 0.60$	$0.~10\sim 0.50$	≤0.035	$\leq 0.035 \leq 0.035$	$0.50 \sim 0.80$	$0.~40 \sim 0.~65$	i	ı	≥42	1	≥21	1	l
	15CrMo	#	0. 12 \sim 0. 18	0. $40 \sim 0.70$	$0.17 \sim 0.37$	≤0.015	≤0.025	$0.80 \sim 1.10$	$0.40 \sim 0.55$	ļ	440~ 640		≥295	1	≥21/19	≥40/27
1Cr-0. 5Mo	A213-T12 A335-P12	業	$0.05\sim$ 0.15	$0.30 \sim 0.61$	≪0.50	≤0.025	≤0.025	$0.80 \sim 1.25$	$0.44 \sim 0.65$	-	≥415	09€	≥220	≥32	≥30	1
	STBA22 STFA22 STPA22	В	≤0.15	0.30 \sim 0.60	≤0.50	≪ 0. 035	≤0. 035 ≤0. 035	0.80~ 1.25	0. $45 \sim 0.65$	I	l	≥42	ı	>21		
	12Cr1Mo		$0.08 \sim 0.15$	$0.30 \sim 0.60$	$0.17 \sim 0.37$	≤0.015 ≤0.025	≤0.025	$1.00 \sim 1.50$	0.45 \sim 0.65	1	$415 \sim 560$	-	≥205	1	≥22/20	>40/27
1. 25Cr-0. 5Mo	A335-P11 A199-T11	業	$0.05\sim$ 0.15	$0.30 \sim 0.60$	$0.50 \sim 1.00$	≤0.025	≪0.025	$1.00\sim$ 1.50	0. $44 \sim$ 0. 65	ı	≥415	9€	≥205	≥30	≥22	ı
	STBA23 STFA23	Ш	≤0.15	$0.30 \sim 0.60$	$0.50 \sim 1.00$	≤0.030	≤0.030 ≤0.030	$1.00 \sim 1.50$	$0.45 \sim 0.65$	ı	1	>42	ļ	>21	l	1
1Cr-0. 5Mo-V	12Cr1MoV		$0.08 \sim 0.15$	0. 40~ 0. 70	$0.17 \sim 0.37$	≤0.010 ≤0.025		0.90~ 1.20	$0.25 \sim 0.35$	0.15~ 0.30	$470 \sim 640$	ı	>255	ı	≥21/19	>40/27

表 A. 2 国内外常用铬钼钢管化学成分和力学性能对照(续)

													,		
		冲击吸收能量 (如何/婚句)	A (新山) (東山) A V 2 (新 山) (東 山) 8 8 1 1 1 1 1 1 1 1	≥40/27	l	l	>40/27	l	1	>40/27	_	l		≥40/27	- -
	고 고	伸不奉 //如豆/蘿亞/		≥22/20		ŀ	≥22/20	>30	ı	≥20/18	l	≥30	1	≥20/16	≥30/20
	力学性能	下屈服强度 ReL	kgf/mm ²	1	>30	>21	l	≥30	≥21	-	≥30	≥30	≥21		09≷
		下屈服引	MPa	≥280	≥205	1	≥205	≥205	ſ	≥210	≥205	≥205	ı	≥415	>415
		(度 R _m	kgf/mm ²	ı	09≪	>42	_	09€	≥42		09≪	09≪	>42	!	>85
		抗拉强度 R _m	MPa	$450 \sim 600$	≥415		$415\sim$ 590	≥415	1	$460\sim$ 640	≥415	≥415	1	≥585	≥585
		7	>	l l	1		-	-	ı					0. $18 \sim 0.25$	0. $18 \sim 0.25$
I		Мо		$0.90 \sim 1.13$	$0.87 \sim 1.13$	$0.87 \sim 1.13$	$0.45 \sim 0.60$	$0.45 \sim 0.65$	0.45 \sim 0.65	$0.90 \sim 1.10$	$0.90 \sim 1.10$	$0.90 \sim 1.10$	$0.90 \sim 1.10$	$\begin{array}{c} 0.85 \sim \\ 1.05 \end{array}$	$0.85\sim$ 1.05
		ځ	j	$2.00 \sim 2.50$	$1.90\sim$ 2.60	1. $90 \sim 2.60$	$4.00 \sim 6.00$	$\frac{4.00}{6.00}$	$4.00 \sim$ 6.00	$8.00 \sim 10.00$	$8.00 \sim 10.00$	$8.00 \sim 10.00$	$8.00 \sim 10.00$	$8.0\sim$	$8.00 \sim 9.50$
	致分 -	٥	Г	≤0.025	≤0.025	≤0.030	≪0.025	≤0.025	≤0.030	≤0.025	≤0.025	≤0.025	≤0.030 ≤0.030	≤0.020	≤0.010 ≤0.020
	允 学及分	υ	c	≤0.015	≤0.025	≤0.030	≤0.015	≤0.025	≤0.030	≤0.015	≤0.025	≤0.025	≤0.030	≪0.010	≪0.010
		ម	ā	≪0.50	≤0.50	≤0.50	≪0.50	≤0.50	≪0.50	$0.25 \sim 1.00$	$0.50 \sim 1.00$	$0.25 \sim 1.00$	$0.25 \sim 1.00$	$0.20 \sim 0.50$	$0.20 \sim 0.50$
		Mn		0. $40 \sim$ 0. 60	$0.30 \sim 0.60$	$0.30 \sim$ 0.60	0.30 \sim 0.60	$0.30 \sim 0.60$	$0.30 \sim 0.60$	$0.30 \sim 0.60$	$0.30 \sim 0.60$	$0.30 \sim 0.60$	$0.30 \sim 0.60$	0.30 \sim 0.60	$0.30 \sim 0.60$
		ر	C 0.08∼		$0.05 \sim 0.15$	≤0, 15	≤0.15	≤0.15	≤0, 15	≪0.15	≪0, 15	≤0.15	≤0.15	$0.08 \sim 0.12$	$0.08 \sim 0.12$
	国配			II	楽	Ш	#	美	Ш	#	業	**	Ш	#	**
		级。		12Cr2Mo	A213-T22 A335-P22	STBA24 STPA24 STFA24	12Cr5Mo	A213-T5 A335-P5	STBA25 STFA25 STPA25	12Cr9Mo	A 335- P 9	A213-T9	STBA26 STFA26	10Cr9Mo1V NbN	A335-P91
		公称成分			2. 25Cr-1Mo			5Cr-0. 5Mo			9Cr-1Mo			17 271 20	3CF-1M0-V

表 A.3 国内常用铬钼钢管的化学成分和常温力学性能

10 10 10 10 10 10 10 10 10	化学成分	ļ					,	力学性能				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Mo	V	ž	n _O	抗拉 强度 R _m MPa	下屈服强度 Rel或规定 塑性延伸 强度 Rels	年 本 **	冲击吸收 能量 <i>KV</i> 2 J		硬度 HBW	相关标准
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							MPa	纵向 横向	纵向	横向		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	€	$0.25 \sim 0.35$		ı	ı	$450 \sim 600$	≥270	>22 >20	>40	≥27	1	GB 5310— 2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.≪ 0.025 —	$0.44 \sim 0.65$	1	1	1	$415 \sim 665$	≥220	>22 ≥20	≥40	>27	1	GB 5310— 2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\leq 0.40 \sim 0.025 0.70$	$0.40 \sim 0.55$!	ı	410~560	≥205	≥21 ≥19	≥40	≥27	1	GB 5310— 2008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\leqslant 0. 40 \sim 0. 025 0. 70	$0.40 \sim 0.55$	-	≪0.30	≤0.20	$\leq 0.30 \leq 0.20410 \sim 560$	≥205	≥21 ≥19	≥40	≥27 ≤		GB 9948— 2013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\leq 0. 40 \sim 0. 025 0. 70	$0.40 \sim 0.55$		I	ı	410~560	≥205	≥21 ≥19	≥40	≥27		GB 6479— 2013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\leq 0.80 \sim 0.025 1.10$	$0.40 \sim 0.55$		I	1	440~640	≥235	≥21 ≥19	≥40	>27		GB 5310— 2008
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\leq 0.80 \sim 0.025 1.10	$0.40 \sim 0.55$		≤0.30		≤0.20440~640	≥295	≥21 ≥19	≥40	≥27 ≤	€170	GB 9948— 2013
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\leq 0.80 \sim 0.025 1.10$	$0.40 \sim 0.55$	1	1	I	440~640	≥295	≥21 ≥19	≥40	>27	1	GB 6479— 2013
0.08~ 0.40~ 0.17~ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$\leqslant 1.00 \sim 0.025 1.50$	$0.45 \sim 0.65$	-	≤0.30	≤0.20 415~	415~560	≥205	>22 >20	>40	≥27 <	<163	GB 9948— 2013
0.08~ 0.40~ 0.17~ \$ \$	$\leqslant 0.90 \sim 0.025 \ 1.20$	$\begin{array}{c c} 0.25 \sim & 0.15 \sim \\ 0.35 & 0.30 \end{array}$	$\begin{bmatrix} 5 \sim \\ 30 \end{bmatrix}$	1	I	470~640	>255	≥21 ≥19	≥40	>27		GB 5310— 2008
0:01	\leqslant 0.90 \sim 0.025 1.20	$\begin{vmatrix} 0.25 \sim \\ 0.35 \end{vmatrix} \begin{vmatrix} 0.15 \sim \\ 0.30 \end{vmatrix}$	0.30 –	ı	≤0.20	<0.20470~640	≥255	>21 >19	≥40	≥27 ≤		GB 9948— 2013
0.05 0.05 0.20 0.15 0.05 0.20 0.05 0.05 0.05 0.05 0.05 0.05 0.05	\leq 2.00 \sim 0.025 2.50	$0.30 \sim 0.40$	-	I	_	400~540	≥250	>25 -	_	-		GB 150— 2011

表 A.3 国内常用铬钼钢管的化学成分和常温力学性能(续)

<u>.</u>	相关标准		GB 5310— 2008	GB 9948— 2013	GB 150— 2011	GB 6479— 2013	GB 5310— 2008	GB 5310— 2008	GB 5310— 2008	GB 9948—	2013	GB 6479— 2013	GB 9948—	2013	GB 5310— 2008	GB 5310— 2008
	硬度	HBW	_	≤163	1	1	1	≪220	-	≤163	ı		€179	I	≤250	≤250
	及 <i>KV</i> 2	横向	≥27	≥27	-	≥27	I	≥27	1	>97	7	>27	764	<u>, </u>	>27	>27
	冲击吸收 能量 KV ₂ J	纵向	≥40	≥40	≥40	≥40	>40	>40	≥40	7) /	≥40	4	} \/	>40	>40
貓	** A	横向	≥20	≥20	I	≥20	ı	N 18	1	≥20	№18	>20	№ 18	≥16	≥16	>16
力学性能	争 本 多	纵向	≥22	≥22	≥22	≥22	№18	≥22	≥16	≥22	≥20	≥22	≥20	≥18	≥20	≥20
	下屈服强度 Ren或规定 塑性延伸	强度 R _{p0.2} MPa	>280	>280	>280	>280	≥345	>400	>440	≥205	>280	≥195	>210	>390	>415	>440
	抗拉 强度 R _m	MPa	$^{450}_{-600}$	$^{450}_{600}$	$^{450}_{-600}$	$^{450}_{-600}$	$540 \sim 735$	≥510	$^{e10}_{805}$	$^{415}_{590}$	$480\sim 640$	$390 \sim 590$	460~640	590~740	≥585	>620
	Cu		I	≪0. 20	. 1	Į	ı	ı		06 0	#0. 20 #0. 20	1	6		1	ı
	ï		I	≤0.60	1	1	l	ı	ļ	06 07 09 07	, , , , , , , ,	≪0.60	06 0 / 03 0 /	, , , //	≤0.40	≤0.40
	Ţ			_	1	1	$0.08 \sim 0.18$	l	$0.22 \sim 0.38$	ļ		-				ı
	>	,	-	l	1	ı	0.28° 0.42	0.20°	$0.25 \sim 0.35$	ı		ı			0.18°	$0.15 \sim 0.25$
	Mo		$0.90_{1.13}^{\sim}$	$0.90_{-1.13}^{\circ}$	$0.90^{\circ}_{1.10}$	$0.90_{1.13}^{\circ}$	$0.50 \sim 0.65$	$0.05 \sim 0.30$	$\frac{1.00}{1.20}$	0.45~	0.60	$0.40 \sim 0.60$	0.90~	1.10	$0.85 \sim 1.05$	0.3~ 0.6
L学成分 %	Cr		$2.00 \sim 2.50$	$2.00 \sim 2.50$	$2.00 \sim 2.50$	$\frac{2.00}{2.50}$	$\frac{1.60}{2.10}$	$\frac{1.90}{2.60}$	$\frac{2.50}{3.00}$	4.00∼	6.00	$\frac{4.00}{6.00}$	8.00∼	10.00	$\frac{8.0}{9.5}$	$8.5 \sim 9.5$
7	Ь		0.025	0. 025	.≤ 0.025	0.025	≪ 0. 025	.≪ 0. 025	0. 025	V	0.025	€ 0.025	V/	0.025	0.020	0.020
化学成分	S		€ 0.015	€ 0.015	€ 0.015	€ 0.015	€ 0.015	€ 0.010	€ 0.015	V/	0.015	€ 0.015	\/	0.015	0.010	0.010
	Si		≪0.50	≪0.50	≪0.50	≤0.50	$0.45 \sim 0.75$	≤0.50	$0.60_{-0.90}^{-0.60}$	02 0 /	%v. 30	≪0.50	$0.25\sim$	1.00	$0.20 \sim 0.50$	≪0.50
	иW		0. $40 \sim 0.60$	0. $40 \sim 0.60$	0. $40 \sim 0.60$	$0.40 \sim 0.60$	$0.45 \sim 0.65$	0. $10 \sim 0.60$	$0.50 \sim 0.80$	0.30~	0.60	≪0.60	0.30~ 0.25~	09.00	$0.30 \sim 0.60$	$0.30 \sim 0.60$
	C		$0.08 \sim 0.15$	$0.08 \sim 0.15$	$0.08 \sim 0.15$	$0.08 \sim 0.15$	$0.08 \sim 0.15$	$0.04 \sim 0.10$	$0.09 \sim 0.15$, ,	%. 13	≤0.15	- -	CI .0//	$0.08 \sim 0.12$	$0.07 \sim 0.13$
	每		12Cr2MoG	12Cr2Mo	12Cr2Mo1	12Cr2Mo	12Cr2MoWVTiB ^b	07Cr2MoW2VNbB°	12Cr3MoVSiTiB ^d	12Cr5Mo I	12Cr5MoNT	12Cr5Mo	12Cr9Mo I	12Cr9MoNT	10Cr9Mo1VNbN ^e	10Cr9MoW2VNbBN ^f 0. 07

表 A.3 国内常用铬钼钢管的化学成分和常温力学性能(续)

							_		
	相关标准		GB 5310— 2008						
	硬度	HBW	≥238						
	冲击吸收 能量 KV_2 J	横向	>27						
	中部	纵向 横向 纵向	>40						
性能	·秦 8	1 横向) ≥16						
力学性能	(基) = 1 = 4 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	纵向	≥2(
		强度 R _{p0.2} MPa	>440 >20 >16 >40 >27 ≤ 238						, %
	抗拉 强度 R _m	MPa	≥620			W的成分为1.45%~1.75%、B的成分为0.0005%~0.006%。			00° ~ %10
	Ç		1			%2000			为 0. 00
	ż		≤0.40			成分为 0.			3 的成分
	Ï		1			B的			1 %0
	Λ		$0.18 \sim 0.25$:		$\sim 1.75\%$			$1.5\% \sim 2$
	Mo		$0.9 \sim 1.1$			j 1. 45%			1联分为
化学成分 %	Ç		8.5^{\sim}		8%	的成分为		° 0;	₩ M
4	ď		.≤ 0.020		$\%\sim0.008\%$			$\%$ \sim 0.07	%~0°.07
	S		≤ 0.010		ł 0. 002°	⅓≲0.0		⅓ 0.03°	½1 0, 039
	.is		$0.10 \sim 0.50$		的成分	的成分		V的成分	1 代明分
	Mn		$0.30 \sim 0.60$.%07	55%、B	N %80.), 011%,	. 10%, 1	2 %60
	၁		$0.09 \sim 0.13$	30%~0.	$30\%\sim0$.	02% \sim 0.	005%). 06%~C	04%~0
	倒		$11 \text{CF9Mo1W1VNbBN}^{2} \begin{vmatrix} 0.09 \sim 0.30 \sim 0.10 \sim \\ 0.13 & 0.60 & 0.50 \end{vmatrix} \begin{vmatrix} 0.10 \sim \\ 0.50 & 0.010 \end{vmatrix} \approx \begin{vmatrix} 8.5 \sim \\ 9.5 & 1.1 & 0.25 \end{vmatrix}$	a AI 的成分为 0.30%~0.70%。	b W的成分为 0.30%~0.55%、B的成分为 0.002%~	° Nb 的成分为 0.02%~0.08%、N 的成分为≤0.03%、	d B的成分为 0.005%~0.011%。	。Nb 的成分为 0.06%~0.10%、N 的成分为 0.03%~0.07%。	。 No de 4 A D 04 A D 09 B A D 03 A D 05 A D 06 A D

Nb的成分为 0.06%~0.10%、N的成分为 0.04%~0.09%、W的成分为 0.9%~1.1%、B的成分为 0.0003%~0.006%。

50

表 A. 4 国内常用铬钼钢板的化学成分及力学性能

	相关标准	1	GB 713—		GB 713—	2008	GB 713— 2008	GB 713—	2008	GB 150— 2011
	冲击吸收 能量 KV_2 J	≥31 (20°C)	≥31 (20°C)	≥31 (20°C)	≥34 (20°C)	≥34 (20°C)	≥34 (20°C)	≥34 (20°C)	≥34 (20°C)	≥60 (-20°C)
	伸长率 4	≥19	≥19	≥19	≥19	≥19	≥19	≥19	≥19	>17
力学性能	下屈服 强度 ReL MPa	≥295	≥275	≥255	>310	>300	≥310	≥245	≥235	>415
	抗拉 强度 R _m MPa	450~290	$450 \sim 590$	$440 \sim 580$	520~680	510~670	520~680	$440 \sim 590$	$430 \sim 580$	590~760
:	钢材厚度 mm	09~9	>60~100	>100~150	$6 \sim \! 100$	>100~150	$6{\sim}150$	09~9	>60~100	30~120
	Cu	·	ı		1		-			≤0.20
	Ŋ		1		١	 -	_	ł		≤0.25 ≤0.20
	Мо	!	0.45^{\sim}	3	$0.45 \sim$	0.65	$0.90 \sim 1.10$	$0.25\sim$	0.35	$0.90 \sim 1.10$
	Cr		$0.80 \sim 0.45 \sim 1.20 \sim 0.45$	i :	1.15~ 0.45~	1.50	$\begin{array}{c c} 2.00 & 0.90 \\ 2.50 & 1.10 \end{array}$	06.0	1.20	$2.00 \sim 2.50$
化学成分 %	P		≤0.025		060 0 00 000	0.020	≪0. 020	0	©70.0≲	≤0.010
1	S		≤0.010 ≤0.025		010 0>	010.07	≤0. 50 ≤0. 010 ≤0. 020	5	₩0. U10	<0.10 <0.005 <0.010
	Si		0. 15^{\sim}	;	$0.50 \sim$	0.80	≪0. 50	0.15~	0.40	≪0. 10
	Mn		$0.40 \sim 0.40$:	$0.05 \sim 0.40 \sim 0.50 \sim$	0.65 0.80	$0.30 \sim 0.60$	0.40	0. 70	$0.30 \sim 0.60$
	C		0. 12 \sim	;	$0.05 \sim$	0.17	$0.08 \sim 0.30 \sim 0.15 0.60$	0.08~	0.15	$0.11 \sim 0.15$
	多		15CrMoR		14C-1140B	TTCIIMOR	12Cr2Mo1R	0.08~ 0.40~ 0.15~	12CT1M0VK	12 Cr2Mo1VR $^{\rm b}$ $\begin{array}{ccc} 0.11 \sim & 0.30 \sim \\ 0.15 & 0.60 \end{array}$

^a V 的成分为 0.15%~0.30%。 ^b V 的成分为 0.25%~0.35%、Nb 的成分为≤0.07%、Ti 的成分为≤0.03%、B 的成分为≤0.002%、Ca 的成分为≤0.015%。

表 A.5 国外铬钼钢板的化学成分及力学性能

			·* / 74	I	71.71.71.71	1 1 200		,				
张母 MLS V	力 回			化源	化学成分 *					4	力学性能	
A3.114 WNE 例 号	(X/子 0 mm	C	Mn	Si	S	Ъ	Cr	Мо	抗拉 强度 R _m MPa	下屈服 强度 Ret MPa	伸长率 <i>A</i> %	冲击吸收 能量 KV_2 J
	δ≤25	≤0.18										
A 10 00 4	25<δ≤50	≤0.21	00 0.	15.0	A 200 0 >		l	0 412.0 64	1000000	736		
A204 G I.A	50<8≤100	€0.23	%n. 30	0. 13 -0. 43				0.41 ~0.04	450 - 365	CC7/	<u></u>	!
	$\delta > 100$	≤0.25										
	δ≤25	≪0.20										
2 2 4 9 0 4	25<δ≤50	€0.23	90	100					000	, ,	7	
А204 (п.В	50<δ≤100	≤0.25	// n. 38	0. 13∼0. 45	″ ∦0.030 #	₩0.035		0.41 \sim 0.64 485 \sim 620	079~084	#Z/2		1
	\$>100	≤0.27										
	<i>δ</i> ≤25	€0.23										
(,	25<∂≪50	≤0.26	9	L C		12 C				I. 0 0	,	
A204 Gr.C	50<δ≤100	≤0.28	// n. 98	0.15~0.49	″			0. 41~0. 64	010~010	£67 <i>₩</i>	0I	l
	8>100	≤0.28										
A387 Gr.2	任意	0.04~0.21	0.50~0.88	$0.13\sim0.45$	≤0.035 ≥	≤0.035 ($0.46\sim0.85$	$0.40\sim0.65$	380~220	≥230	>18	1
A387 Gr.12	任衛	$0.04 \sim 0.17$	$0.35\sim0.73$	$0.13\sim0.45$	≤0.035 ≤	≤0.035 ($0.74\sim1.21$	$0.40\sim0.65$	380~220	≥230	>18	
A387 Gr.11	任意	$0.04 \sim 0.17$	$0.35\sim0.73$	$0.44\sim0.86$	≤0.035 ≤	≤0.035 ($0.94\sim1.56$	$0.40\sim0.70$	$415 \sim 585$	>240	≥19	
A387 Gr.22	任意	$0.04\sim0.15$	22 0 26 0	V 0 E0	v 200 0 >	1000	1 00 2 9 29	70 O	115 505	7000	0 7	
A387 Gr.22L	任意	€0.12		۰۰. ۲۰			00 - 2. 02	0.00	000-011	602/	01/	İ
A387 Gr.21	任司	$0.04\sim 0.15$	99 0~90 0	< 0.50	<0.035	, 280 0 >	6 63~3 37	0.85~1.15	415~585	300	01/	1
A387 Gr.21L	任意	≤0.12					. 00 - 0. 01	0.00 -1.10	410 - 500	607/	01/1	
A387 Gr.5	任意	≤0.15	$0.25\sim0.66$	≤0.55	≤0.030 ≤	≤0.035	$3.90\sim6.10$	$0.40\sim0.70$	$415 \sim 585$	≥205	≥18	1
A387 Gr.9 ^a	任意	≤0.15	$0.25\sim0.66$	≤1.05	≤0.030 <	≤0.030 7	$.90\sim10.10$	7. $90 \sim 10$, 10 0. $85 \sim 1$, 15 $415 \sim 585$	$415 \sim 585$	≥205	≥18	i I
A387 Gr.91 ^b	任意	$0.06\sim0.15$	$0.25\sim0.66$	$0.18\sim0.56$	≤0.012	≤0.025	7.90 \sim 9.60	$0.80 \sim 1.10$ $585 \sim 760$	585~760	≥415	≥18	1
a V 的成分为≤0.05%。 b V 的成分为 0.16%~C	^a V 的成分为≤0.05%。 b V 的成分为 0.16%~0.27%、Nb 的成分为 0.05%	Nb 的成分为 0.	~0.11%	Ti 的成分为≤0.01%、		9成分为(B 的成分为 0.025%~0.08%、		A I 的成分为≤0.02%、		Zr 的成分为≤0.01%。	, ,

常用铬钼钢锻件的化学成分及力学性能 表 4.6

					女出演:						:				
					化手 双 刀 %							力学性能			
倒	Ü	Mn	Si	S	Ь	Ċ	Мо	;;	Cu	钢材厚度 mm	抗拉 强度 R _m MPa	下屈服 强度 R _{cL} MPa	伸长率 <i>A</i> %	冲击吸收 能量 KV_2 J	相关标准
(L	0.32 \sim	0.40	0.15	, , , , , , , , , , , , , , , , , , ,	0	0.80~	0.15	06 0 >	70 0	€300	620~790	>440	>15	≥41 (0°C)	NB/T 47008—
35CrMo	0.38	0.70	0.40	≈0.015 ≈0.02	≈0. uzə	1. 10	0.25	% 	67.0%	>300~200	610~780	>430	>15	≥41 (0°C)	2010
	$0.12 \sim$	$0.30\sim$	0.10	2	50	0.80~	$0.45 \sim$	08 0 >		≪300	480~640	≥280	≥20	≥47 (20°C)	NB/T 47008—
15CrMo	0.18	0.80	09.0	% 0.015	≈0. 015 	1.25	0.65	%o. 30	77.0%	>300~200	470~630	≥270	≥20	≥47 (20°C)	2010
8,12,13	0.09	0.40	$0.15 \sim$	5	00	0.90	$0.25 \sim$	V 0 30	0 05	≪300	470~630	≥280	>20	≥47 (20°C)	NB/T 47008—
12Cr1MoV	0.15	0.70	0.40	≈0.015	%0. 015 %0. 025	1.20	0.35	%v. 30	~0. <i>2</i> .0	>300~200	460~620	≥270	≥20	≥47 (20°C)	2010
	0.11	0.30~	$0.50 \sim$	5	0	$1.15\sim$	$0.45 \sim$	6	0	≪300	490~660	≥290	≥19	≥47 (20°C)	NB/T 47008—
14Cr1M0	0.17	08.0	0.80	≈0.013	≈0. 013 	1.50	0.65	©0.30	©7 .0 ≈	>300~200	480~650	≥280	≥19	≥47 (20°C)	2010
1 100 001	-	0.30~	\ \	5	000	$2.00\sim$	0.90	, ,		≥300	510~680	≥310	≥18	≥47 (20°C)	NB/T 47008—
12Cf2M01	%0. I3	09.0	0c .0≈	≫0.012 	≈0. 30 ≈0. 012 ≈0. 020	2.50	1.10	%v. 30	%0. 43	>300~200	$500 \sim 670$	≥300	≥18	>47 (20°C)	2010
days ago Cot		0.30~	<u> </u>	5		2.00~	0.90~	20 0	0	≪300	590~760	≥420	>17	≥60 (-20°C)	NB/T 47008—
12CrziM01V	%0. IO	09.0	₩0. 10	≈0. 10 ≈0. 010 ≈0. 01	≈ U. U12	2.50	1.10	©7.0≪		>300~200	580~750	≥410	>17	≥60 (-20°C)	2010
3/11 3/10 5/01		0.30~	-	5	5	2.70~	0.90	, O	100	≪300	590~760	≥420	>17	≥60 (-20°C)	NB/T 47008—
12CF3M01V	%n. 13	0.60	₩0. 10	≈0. 10 ≈0. 010 ≈0. 01	≈ 0. 01∠ 	3.30	1.10	€7.0≈	%0. 23 %	>300~500	$580 \sim 750$	≥410	>17	≥60 (-20°C)	2010
1Cr5Mo	≤0.15	€0.60	≤0.50		≤0.015 ≤0.025	$4.00 \sim$ 6.00	0. $45 \sim 0.65$	≤0.50	≤0.25	₹200	290~760	≥390	\ \∨ 18	≥47 (20°C)	NB/T47008— 2010
10 Cr9MoIVNb d 0.08 \sim 0.12	$\begin{vmatrix} 0.08 \sim \\ 0.12 \end{vmatrix}$	$0.30 \sim 0.60$	$0.20 \sim 0.50$	≤0.010 ≤0.02	≤0.020	$8.00 \sim 9.50$	$0.85 \sim 1.05$	≤0.40	≤0.25	≥200	290~760	≥420	≥18	≥47 (20°C)	NB/T 47008— 2010
3 t. b.	3	000												20 20 10	

a V的成分为 0.15%~0.30%。

^b V 的成分为 0. 25%~0. 35%、Nb 的成分为≤0. 07%、Ti 的成分为≤0. 03%、B 的成分为≤0. 002%。

°V的成分为 0.20%~0.30%、Ti 的成分为 0.015%~0.035%、B 的成分为 0.001%~0.003%。 d V 的成分为 0.18%~0.25%、Nb 的成分为 0.06%~0.10%、Al 的成分为≤0.04%、N 的成分为 0.03%~0.07%。

表 A.7 常用铬钼钢铸件的化学成分及力学性能

	相关标准	GB /T 16253— 1996	GB/T16253— 1996	JB/T 10087— 2001	JB/T 10087— 2001	GB/T 16253— 1996	GB/T16253— 1996	JB/T 10087— 2001	JB /T 10087— 2001	GB/T 16253— 1996	GB /T 16253— 1996	JB/T 10087— 2001	GB/T 16253— 1996	GB/T 16253— 1996
	冲击吸收 能量 KV_2 J	≥25 (20°C)	≥13 (20°C)	>20	I	≥27 (20°C)	≥24 (20°C)	>20	>20	≥25 (20°C)	≥40 (20°C)		≥25 (20°C)	≥20 (20°C)
力学性能	伸长率 4%	≥21	>17	≥18	≥20	≥18	≥15	≥15	>15	>18	≥18	>18	>16	≥16
	下屈服 强度 Ret MPa	>250	>320	>245	>275	>290	>420	>315	>345	>280	≥390	≥275	≥420	>420
	抗拉 强度 R _m MPa	450~600	500~650	460	485~660	490~640	590~740	>490	>490	510~660	092~009	485~660	630~780	630~780
	Λ	I	$0.22 \sim 0.32$	1	1	1	$0.15 \sim 0.35$	$0.20 \sim 0.30$	$0.25 \sim 0.40$	1	1		1	-
	Ņ	1	≤0.40	l	I	1	i	I	-	ı	I	I	l	-
	Мо	0. $40\sim$ 0. 60	0. $40 \sim$ 0. 60	0. $40 \sim$ 0. 60	0, $45 \sim 0.65$	0.45 \sim 0.65	0.90 \sim 1.20	0. $50 \sim$ 0. 70	$0.90 \sim 1.20$	$0.90 \sim 1.20$	$0.90 \sim 1.20$	$0.90 \sim 1.20$	0.45 \sim 0.65	1.00~ 1.30
	Cr	≤0.030	$0.30 \sim 0.60$	$0.50 \sim 0.80$	$1.00 \sim 1.50$	$1.00 \sim 1.50$	1. $20 \sim$ 1. 60	$0.90 \sim 1.20$	1. $20 \sim$ 1. 70	2. $00 \sim$ 2. 50	$2.00\sim$ 2.50	$2.00 \sim$ 2.75	4. $00 \sim$ 6. 00	$8.00 \sim 10.0$
化学成分 %	Ь	≤0.035	≪0.035	≤0.030	≤0.030	≤0, 035	≤0.035	≤0.030	≤0.030	≤0.035	≤0.035	≤0.030	≤0.035	≤0.035
7	S	≤0.035	≪0.035	≤0.030	≤0.030	≤0.035	≤0.035	≤0.030	≤0.030	≤0.035	≤0.035	≤0.030	≤0.035	≤0.035
	Si	0.30 \sim	0.30 \sim 0.60	0. $20 \sim$ 0. 60	€0.60	0.30 \sim 0.60	0.30 \sim 0.60	0. $20 \sim$ 0. 60	0. $20 \sim$ 0. 60	$0.30 \sim 0.60$	0.50 \sim 0.80	≪0.60	≪0.80	≪0.80
	Mn	0, $50 \sim 1.00$	0. $40 \sim$ 0. 70	$0.50 \sim 0.80$	$0.50{\sim}$ 0.80	$0.50 \sim 0.80$	$0.50 \sim$	0. $40 \sim$ 0. 70	$0.40 \sim 0.70$	$0.50\sim$	$0.30 \sim 0.60$	0. $40 \sim$ 0. 70	0.50 \sim 0.80	0. $50 \sim$ 0. 80
	C	0. $15 \sim 0.23$	0. $10 \sim$ 0. 17	$0.15 \sim 0.25$	≤0.20	0. $10 \sim$ 0. 20	0. $13 \sim 0.20$	0. $18 \sim 0.25$	0. 12 \sim 0. 20	$0.08\sim 0.15$	0. $13 \sim 0.20$	≤0.18	0. 12 \sim 0. 19	$0.10 \sim 0.17$
	級 名	ZG19MoG	ZG14MoVG	ZG20CrMo	ZG15Cr1Mo	ZG15Cr1MoG	ZG17Cr1Mo1VG	ZG20CrMoV	ZG15Cr1MoV	ZG12Cr2Mo1G	ZG16Cr2Mo1G	ZG15Cr2Mo1	ZG16Cr5MoG	ZG14Cr9Mo1G

部分铬钼钢焊接材料的选用 附录 B (资料性附录)

表 B. 1 给出了常用铬钼钢焊接材料的选用;表 B. 2 给出了异种钢的焊接材料选用及推荐的管道焊后热处理温度。

常用铬钼钢焊接材料的选用 表 B. 1

d d	4	Į.	1 1	3	埋弧焊	(焊
	世	*	1条序签		存存	焊剂
	GB/T 5118	统一编号系列	GB/T 8110	电建牌号	GB/T12470	GB/T12470
15MoG 20MoG	E5015-I M3	R107	ER49-A1		ı	
12CrMo 12CrMoG	E5515-CM	R 207	ER55-B2	TIG-R30	H08CrMoA	F48P2-H08CrMoA
15CrMo 15CrMoG 15CrMoR	E5515-1CM	R307	ER55-B2	TIG-R30	Н08СтМоА	F55P2-H08CrMoA
ZG20CrMoV	E5515-1CMV	R317	ER55-B2-MnV	TIG-R31	H08CrMoVA	F55PZ-H08CrMoVA
12Cr1MoV	E5515-1CMV	R317	ER55-B2-MnV	TIG-R31	H08CrMoVA	F55PZ-H08CrMoVA
ZG15Cr1Mo1V	E5515-1CMWV	R327	ER55-B2-MnV	TIG-R31	H08CrMoVA	F55PZ-H08CrMoVA
12Cr2Mo 12Cr2Mo1 12Cr2MoG 12Cr2MoIR	E6215-2C1M	R407	ER62-B3	TIG-R40	1	ı
12Cr2MoWVTiB	E5515-2CMVWB	R347	ER62-B3	TIG-R40	1	
12Cr3MoVSiTiB	E6216-2CIMVNb	R417	ER62-B3	TIG-R40	I	Ī
12Cr5Mo	E5515-5CM	R507	ER55-B6		-	
12Cr9Mo	E6215-9C1M	R707	ER55-B8			
10Cr9Mo1VNbN	E6215-9C1MV	R717	ER62- B9	1		

表 B. 2 异种钢的焊接材料选用及管道焊后热处理温度推荐

公称成分					焊接材料	选用及管道焊	焊接材料选用及管道焊后热处理温度代码	代码				
C-Mo	1-a-(I)- I -A	l										
0. 5Cr-0. 5Mo	1-a-(I)- I -A	2-b-@-II -A		ı	1							
1Cr-0.5Mo	1-a-(I)- I - B	2-b-②-II-B	3-b-@-II-B			ı		_				
1Cr-0. 5Mo-V	1-a-(I)- I -C	2-b-@-II-C	3-b-@-II-C	4-c-@-III-C			ı	ı				
1Cr-1Mo-V	1-a-(1)- I -C	2-p-(2)- II -C	3-p-@-II-C	4-c-@-III-C	5-c-@-III-C				l	ı		
2Cr-0. 5Mo	1-a-(I)- I -B	2-b-②-II-B	3-b-@-II-B	4-c-2-III-C	5-c-@-III-C	6-d-@-III-B					I	ı
2. 25Cr-1Mo	1-a-(I)- I -D	2-b-@-II-D	3-4-@-II-D	4-c-@-III-C	2-c-(2)-III-C	G−Ⅲ- ②- p -9	Q-/I-(®-p-9	-				
2Cr-0. 5MoVW	1-a-(I)- I -C	2-P-@-II-C	3-b-@-II-C	4-c-@-III-C	5-c-@-III-C	O-Ⅲ-©-p-9	O-VI-®-b-9	7-e-C				
3Cr-1MoVTi	1-a-(i)- I -C	2-b-@-II-C	3-6-@-II-C	4-c-@-III-C	5-c-@-III-C	Э-Ш-©-р-9	O-NI-®-P-9	7-e-C	8-e-C			
5Cr-0. 5Mo	1-a-(1)- I -D	2-b-@- II -D	3-b-@-II-D	4-c-@-III-C	5-c-@-III-C	Q -Ⅲ-②-p-9	Q-VI-®-b-9	7-e-C	8-e-C	9-f-(1)-V-D		
9Cr-1Mo	1-a-(I)- I -D	2-b-②- II -D	3-p-@-II-D	4-c-(2)-III-C	2-c-@-III-C	Q-Ⅲ-②-p-9	Q-/I-(E)-P-9	7-e-C	8-e-C	Q-Λ-(Φ)-J-6	10-g-(5)-VI-D	
9Cr-1Mo-V	1-a-(I)- I -E	2-b-@-II-E	3-b-@-II-E	4-c-②-III-E	5-c-@-III-E	∃-III-©-P-9	3-VI-©-b-9	7-e-E	8-e-E	9-f-(4)-V-E	10-g-(5)-VI-E	11-h-6)-E
钢的公称成分	C-Mo	0. 5Cr-0. 5Mo	1Cr-0. 5Mo	1Cr-0. 5MoV	1Cr-1MoV	2Cr-0. 5Mo	2. 25Cr-1Mo	2Cr- 0. 5MoVW	3Cr- 1MoVTi	5Cr-0. 5Mo	9Cr-1Mo	9Cr-1Mo-V
注1: 焊条件	P. P	9: 1-R107; 2-	注1: 焊条代码1~11分别为: 1-R107; 2-R207; 3-R307;		-R327; 6-R40	7; 7—R347; 8-	4-R317; 5-R327; 6-R407; 7-R347; 8-R417; 9-R507; 10-R707; 11-R717。	; 10-R707;	11-R717。			
注 2: 銀弧焊	₽丝代码 a~h 分	别为: a-ER49-	氩弧焊丝代码 a~b 分别为:a-ER49-A1/H08CrMo/a′-Ti	'-TIG-R10; b-	ER55-B2/H13C	'rMo/b' -TIG-R:	IG-R10; b-ER55-B2/H13CrMo/b' -TIG-R30; c-ER55-B2-MnV/H08CrMoV/c' -TIG-R31; d-ER62-B3/H08Cr2Mo1/d' -TIG-R40;	-MnV/H08CrN	AoV/c' -TIG	-R31; d—ER62	-B3/H08Cr2Mo1	/d' -TIG-R40;
еН0	8Cr2MoVNb; f	—ER55-B6; g-	-ER55-B8; h-	e-H08Cr2MoVNb; f-ER55-B6; g-ER55-B8; h-ER62-B9; 其中代码 a′ ~d′ 为能源局开发的专用氩弧焊丝。	代码 a′~d′为f	能源局开发的专	用氩弧焊丝。					
注3: 熔化表	及气体保护焊丝件	t码①~⑥分别为	注 3: 熔化极气体保护焊丝代码①~⑥分别为; ①-ER70S-A1;		B2; 3-ER90S	-B3; 4-ER805	②-ER80S-B2; ③-ER90S-B3; ④-ER80S-B6; ⑤-ER80S-B8; ⑥-ER90S-B9。	6-B8: 6-ER	90S-B9.			
注4: 埋弧焰	旱丝代码 I ∼UI∮	}别为: I-EA 1	埋弧焊丝代码 I ~U(分别为: I -EA1; II -H08CrMoA;		MoA; IV-EB3;	III—H08CrMoA; IV—EB3; V—EB6; VI—EB8.	-EB8.					

注 5. 热处理温度代码 A~E 分别为: A-600℃~720℃; B-700℃~750℃; C-720℃~750℃; D-700℃~760℃; 工艺管道 E-765℃~785℃、公用工程管道-750℃~770℃。

帐 丞

(资料性附录)

国内外铬钼钢焊材化学成分及力学性能

表 C.1 给出了国内外格钼钢焊接材料对照;表 C.2 给出了国内常用格钼钢焊条熔敷金属的化学成分和力学性能;表 C.3 给出了国内常用铬钼 钢气体保护焊焊丝的化学成分;表 C. 4 给出了国外铬钼钢熔化极气体保护焊焊丝的化学成分;表 C. 5 给出了国外铬钼钢埋弧焊焊丝的化学成分。

表 C.1 国内外铬钼钢焊接材料对照

						J. 7.17.			
		В ф	E	美国	H	*	瑞典	德 国	英国
公称成分	焊接材料	(基本) (B)	统一牌号	AWS	SIſ	KOBE STEEL	ESAB	DIN	BS
	焊条	E2015-IM3	R107	E7015-A1	E4916-1M3	CM-A76	OK74. 41	E Mo B 26	MoBH
C-Mo	实芯焊丝	ER49-A1	l	ER70S-A1	W52-1M3	TG-SM	1	SG Mo	A 30
	焊条	E5515-CM	R207	E8013-G	I	CM-B83	_	E CrMo 0.5B	I
0. 5CF-0. 5Mo	实芯焊丝	_	1	-	-	1			
	焊条	E5515-1CM	R307	E8015-B2 E7015-B2L	E5516-1CM	CM-A96	OK 76. 18	ECrMo 1 B 26	1CrMo B H 1CrMo L B H
1Cr-0. 5Mo 1. 25Cr-0. 5Mo	实芯焊丝	ER55-B2 ER55-B2-Mn	l	ER80S-G ER80S-B2	W55-1CM3	TG-S1CM TG-S80B2	l	SG CrMo 1	A 32
	埋弧焊丝	H08CrMoA	I	F9 P0-EB2 B2		-	1	BFB 155 AC 10 MHP5	1
	药芯焊丝		_	E81T1-B2M	I		!		1
	焊条	E6215-2C1M	R407	E9015-B3 E8015-B3L	E6216-2C1M	CM-A106	OK76. 28	ECrMo 2 B 26	2CrMo B H 2CrMo L B H
2Cr-0. 5Mo	实芯焊丝	ER62-B3 ER55-B3L	.	ER90S-G ER90S-B3	W62-2C1M2	TG-S2CM		SG CrMo 2	A33
2. 20Cl _IMIO	埋弧焊丝	!		F9 P0-EB3 B3		l		BFB 155 AC 10 MHP5	
	药芯焊丝		1	E91T1-B3M	1	-	l		ı

表 C. 1 国内外铬钼钢焊接材料对照(续)

		出		美国		*	瑞典	缓	英国
公称成分	焊接材料	GB (型号)	统一牌号	AWS	JIS	KOBE STEEL	ESAB	DIN	BS
	焊条	E5515-1CMV	R317	_	*****	1	 	EZB	ı
0. 5Cr-0. 5Mo-V	实芯焊丝	ER55-B2-MnV	I		I	ı	1	I	
) OMIO (埋弧焊丝	H08CrMoVA	I			ı			
	焊条	E5515-1CMWV	R327		1	1	1	EZB	1
ICr-1Mo-V	实芯焊丝	Ì	I		ı	_		1	l
MX-M3 0-506	焊条	E5515-2CMVWB	R347	1	_	_	1	EZBz	
2CI 0. 31/10 v w	实芯焊丝	1	1	1	1	1		1	ŀ
	焊条	E5515-2CMVNb	R417		1	1	1	EZB	
3Cr-1MoVTi	实芯焊丝	1	ì	_	Ι	1	1	-	1
	焊条	E5515-5CM	R507	E502-15 E8015-B6	E5516-5CM	CM-5	_	ECrMo5 B26	5СгМоВН
oCF 0. 5M0	实芯焊丝	ER55-B6	l	ER502 ER80S-B6	W55-5CM	TG-S5CM	l	SG CrMo5	A34
90-1Mo	幸	E6215-9C1M	R707	E505-15 E8015-B8	E6216-9C1M	CM-9		ECrM09 B26	9СтМоВН
201 11410	实芯焊丝	1	1	ER505 ER80S-B8	1	TG-S9CM	_	SG CrMo9	A35
11 -111 -00	本	E6215-9C1MV	R717	E9015-B9	E6216-9C1MV	CM-96B9 CM-9Cb	- 1	ECrMo91B	E6215-9C1MV
3CF-11M0~V	实芯焊丝	ER62-B9	l	ER90S-B9	W62-9C1MV W62-9C1MV1	TG-S90B9 TG-S9Cb	1	W9C1MV	W9C1MV

表 C. 2 国内常用铬钼钢焊条熔敷金属化学成分和力学性能

		标准号									9 1. 1. 1. 0.	GB/1 5118— 2012		_					
		每 % %	≥20			7	11/			>14		\\ \\			 		≥17	≥15	≥15
	力学性能	下屈服强度 ReL MPa	>390			(4)	//440 				≥440			≥530		>460	>460	>530	>530
		抗拉强度 R _m MPa	≥490			9	040	•			≥540			≥620		>550	>550	≥620	>620
		其他			I			1		1	l	W0. 25∼0. 50		1					Al \leq 0.04 Cu \leq 0.25 N: 0.02 \sim 0.07
		⁹ Z	l					ı						1		$0.35 \sim 0.65$	l	ı	$0.02 \sim 0.10$
		>	1		ı			١		0.10	0, 35	$0.20 \sim 0.35$		1		$0.25 \sim 0.50$	1	1	$0.15 \sim 0.30$
		ïZ	ı					ı		I				ı			≤0.40	≤0.40	≤i.0
	化学成分	Мо	0. $40 \sim 0.65$		$0.40 \sim 0.65$			$0.40 \sim 0.65$	}	$0.40 \sim$	0.65	$0.70 \sim 1.00$		$0.90 \sim 1.20$		$0.70 \sim 1.00$	$0.45\sim$ 0.65	0.85 \sim 1.20	$0.85 \sim 1.20$
	化量	Cr	I		0. $40 \sim 0.65$	}		$1.00 \sim 1.50$		0.80	1.50	$0.80 \sim 1.50$		$2.00 \sim 2.50$		$2.40 \sim 3.00$	4. $50 \sim$ 6. 00	$8.0 \sim 10.5$	8.0~ 10.5
		S P	≤0.030		€0.030			≤0.030	·	060 0	₩0. 030	≤0.030	1	≤0.030		≤0.035	≤0.030	€0.030	≤0.010
		Si	≤0.80		≤0.80			≤0.80		00 0 >	00.00//	≤0.60		≤0.80		≤0.50	≪0.90	≪0.90	€0.30
		Mn	€1.00		≤0.90			≤0.90		00 0>	06.04 10.90	$0.70 \sim 1.10$		≪0.90		0.50^{\sim} 0.90	≤1.00	≤1.00	≪1.25
)	≤0.12		$0.05 \sim 0.12$	1		$0.05 \sim 0.12$		0.05~	0.12	$0.05 \sim 0.12$		$0.05 \sim 0.12$		$0.05 \sim 0.12$	$0.05 \sim 0.10$	$0.05 \sim 0.10$	$0.08 \sim 0.13$
	;	% 肆 一 마	R107		R207			R307		D 217	163	R327		R407		R417	R507	R707	R717
		焊条型号	E5015-IM3	E5515-CM	E5516-CM	E5518-CM	E5515-1CM	E5516-1CM	E5518-1CM	E5540-1CMV	E5515-1CMV	E5515-1CMWV	E6215-2C1M	E6216-2C1M	E6218-2C1M	E5515-2CMVNb	E5515-5CM	E6215-9C1M	E6215-9C1MV

表 C. 3 国内常用铬钼钢气体保护焊焊丝化学成分

					# 47	人 电 街 台					
存存					7 2	% (XC)					标准品
	С	Mn	Si	S, P	Cr	Mo	Ni	Λ	Cu	其他	1
ER49-A1	≤0.12	€1.30	0.30~0.70	≤0.025		$0.40\sim0.65$	€0.20		≤0.35	≪0.50	GB/T 8110—2008
ER49-B2L	≪0.05	0.40~0.70	0.40~0.70	≤0.025	1.20~1.50	0.40~0.65	€0.20	1	≤0.35	≪0.50	GB/T 8110—2008
ER55-B2	0.07~0.12	$0.07 \sim 0.12$ 0.40 ~ 0.70	0.40~0.70	≪0.025	1. 20~1. 50	0.40~0.65	€0.20		≪0.35	≪0.50	GB/T 8110—2008
ER55-B2-MnV 0.06∼0.10 1.20∼1.60	0.06~0.10	1.20~1.60	0. 60~0. 90	S≤0.025 P≤0.03	1.00~1.30	0.50~0.70	≪0.25	0. 20~0. 40	≪0.35	≪0.50	GB/T 8110—2008
ER55-B2-Mn $0.06\sim0.10$ $1.20\sim1.70$	0.06~0.10	1.20~1.70	0.60~0.90	S≤0. 025 P≤0. 03	0.90~1.20	0.45~0.65	≤0.25	l	≤0.35	≪0.50	GB/T 8110—2008
ER62-B3	$0.07 \sim 1.20$	0.40~0.70	0.40~0.70	0.025	2.30~2.70	$0.90\sim1.20$	0. 20	-	≪0.35	≪0.50	GB/T 8110—2008
ER55-B3L	≪0.05	0.40~0.70	0.40~0.70	≤0.025	2.30~2.70	0.90~1.20	€0.20	I	≪0.35	≪0.50	GB/T 8110—2008
ER55-B6	≤0.10	0.40~0.70	≤0.50	0.025	4.50~6.00	$0.45\sim0.65$	09 .0	ı	≪0.35	≪0.50	GB/T 8110—2008
ER55-B8	≤0.10	0.40~0.70	≪0.50	0.025	4. 50~6. 00	$0.80\sim1.20$	0.50	1	≤0.35	≪0.50	GB/T 8110—2008
ER62-B9	0.07~0.13	≤1.20	$0.15\sim0.50$	0.010	$8.00\sim10.50$	$0.85\sim1.20$	€0.80	$0.15\sim0.30$	≤0.20	≪0.50	GB/T 8110—2008
TIG-R10		$0.90\sim1.10$	$0.45\sim0.65$	≪0.015	ı	0.45~0.60	l	I	-	Ti0. 03~0. 06	
TIG-R30	9	$0.80\sim1.10$	$0.45\sim0.65$	≤0.015	1. $05\sim1.25$	0.45~0.60	1	1	1	Ti0. 03~0. 06	上海电力修造总
TIG-R31	90.70//	0.80~1.00	0.30~0.50	≤0.015	1. $00\sim1.\ 20$	0.40~0.50	I	0.20~0.35	1	Ti0. 03~0. 06	厂标准
TIG-R40		0.80~1.00	0.30~0.50	≤0.015	$2.20\sim2.40$	$1.00\sim1.10$	1	I	1	Ti0. 03~0. 06	

表 C. 4 国外铬钼钢熔化极气体保护焊焊丝化学成分

中里多里					化学成分	- -				中类草
子子	C	Mn	Si	S, P	Ç	Mo	Z	Λ	Cu	T H
ER70S-A1	≪0.12	≤1.30	$\leq 1.30 0.30 \sim 0.70$	€0.025	1	$0.40\sim0.65$	≤0.20		≤0.35	SFA-5. 28
ER80S-B2	$0.07 \sim 0.12$ $0.40 \sim 0.70$ $0.40 \sim 0.07$	0.40~0.70	0.40~0.07	≤0.025	1. $20 \sim 1.50$ 0. $40 \sim 0.65$	0.40~0.65	€0.20		≤0.35	SFA-5. 28
ER90S-B3	$0.07 \sim 0.12$ $0.40 \sim 0.70$ $0.40 \sim 0.70$	0.40~0.70	0.40~0.70	≤0.025	$2.30\sim2.70$ $0.90\sim1.20$	$0.90\sim1.20$	≤0.20	Ι	≤0.35	SFA-5. 28
ER80S-B6	≪0.10	≤ 0.10 0. 40 \sim 0. 70	≪0.50	≤0.025	$4.50\sim6.00$ $0.45\sim0.65$	$0.45\sim0.65$	≪0.60	I	≤0.35	SFA-5. 28
ER80S-B8	≤0.10	≤ 0.10 0.40 ~ 0.70	≪0.50	≤0.025	$8.00\sim10.50$ 0.80 ~1.20	$0.80 \sim 1.20$	≪0.50	I	≤0.35	SFA-5. 28
ER90S-B9	ER90S-B9 0. 07 \sim 0. 13 1. 20 0. 15 \sim 0. 30	1. 20	$0.15\sim0.30$	≪0.010	\leq 0.010 8.00 \sim 10.50 0.85 \sim 1.20	$0.85\sim1.20$	≪0.80	$0.15\sim0.30$	€0.20	SFA-5. 28

表 C. 5 国外铬钼钢埋弧焊焊丝化学成分

Γ				$\overline{}$		$\overline{}$			
标准号	1	SFA-5. 23	SFA-5. 23	SFA-5. 23	SFA-5. 23	SFA-5. 23	SFA-5. 23	SFA-5. 23	SFA-5. 23
	Cu	≤0.35	≤0.35	≤0.35	≤0.30	≤0.35	≤0.35	≤0.35	≤0.10
	Λ	1	-		0.20~0.30		-	-	$0.15\sim0.25$
	Ni	ı	1	1			_	_	≤1.00
	Мо	$0.45\sim0.65$	$0.45\sim0.65$	$0.45\sim0.65$	0.45~0.65	$0.90\sim1.10$	$0.45\sim0.70$	$0.80 \sim 1.20$	$0.80 \sim 1.10$
化学成分	Cr		$0.40\sim0.75$	$1.00\sim1.75$	$1.00\sim1.50$	$2.25\sim3.00$	$4.50\sim6.50$	$8.00 \sim 10.50$	$8.00\sim10.00$ $0.80\sim1.10$
	S, P	≪0.025	≤0.025	≤0.025	≤0.015	≤0.025	≤0.025	≤0.025	≤0.010
日後の独合	Si	≤0.20	$0.05\sim0.30$	$0.05\sim0.30$	0.55~0.75	$0.05\sim0.30$	$0.05\sim0.50$	$0.05\sim0.50$	≤0.30
	Mn	$0.65\sim1.00$	$0.40\sim0.80$ $0.05\sim0.30$	$0.45\sim1.00$	$0.28 \sim 0.33$ $0.45 \sim 0.65$ $0.55 \sim 0.75$	$0.05\sim0.15$ $0.40\sim0.80$	$0.35\sim0.70$ $0.05\sim0.50$	$0.30\sim0.65$	≤1.25
	၁	0.05~0.17	≤0.10	$0.07\sim0.15$	0.28~0.33	$0.05\sim0.15$	≤0.10	≪0.10	$0.07{\sim}0.13$
	,	EA1	EB1	EB2	ЕВ2Н	EB3	EB6	EB8	EB 9

本规范用词说明

- 1 为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:
 - 1) 表示很严格,非这样做不可的: 正面词采用"必须",反面词采用"严禁";
 - 2) 表示严格,在正常情况下均应这样做的: 正面词采用"应",反面词采用"不应"或"不得";
 - 3) 表示允许稍有选择,在条件许可时首先应这样做的: 正面词采用"宜",反面词采用"不宜";
 - 4) 表示有选择,在一定条件下可以这样做的,采用"可"。
- 2 条文中指明应按其他有关标准执行的写法为:"应符合……的规定"或"应按……执行"。

中华人民共和国石油化工行业标准

石油化工铬钼钢焊接规范

SH/T 3520-2015

条文说明

修订说明

SH/T 3520—2015《石油化工铬钼钢焊接规范》,经工业和信息化部 2015 年 4 月 30 日以第 28 号公告批准发布。

本规范是在 SH/T 3520—2004《石油化工铬钼耐热钢焊接规程》的基础上修订而成,上一版的主编单位是中国石化集团北京燕化建筑安装工程公司,主要起草人员是赵棣、杨雷、云小强、杨惠荣、崔夹川。

本规范修订过程中,编制组进行了广泛的调查研究,总结了我国工程建设焊接领域的实践经验,同时参考了国外先进技术法规、技术标准,通过硬度试验取得了一些重要技术参数。

为便于广大设计、施工、科研、学校等单位有关人员在使用本规范时能正确理解和执行条文规定,《石油化工铬钼钢焊接规范》编制组按章、条顺序编制了本规范的条文说明,对条文规定的目的、依据以及执行中需注意的有关事项进行了说明。但是,本条文说明不具备与规范正文同等的法律效力,仅供使用者作为理解和把握规范规定的参考。

目 次

1	范围	••33
3	术语和定义	••33
4	材料	 33
	4.2 钢材	··33
6	焊前准备	 33
	6.1 坡口制备	·· 33
	6.2 组对与定位	 33
7	焊接工艺····································	••33
	7.2 焊接材料选用和准备	
	7. 4 焊接	
8	焊接检验	··34
	8.2 无损检测	••34
9	返修	··34
10	0 焊后热处理	··34

石油化工铬钼钢焊接规范

1 范围

本规范中焊接接头材料种类包括: 铬钼钢与铬钼钢: 铬钼钢与碳钼钢: 碳钼钢与碳钼钢。

3 术语和定义

- 3.1 本规范定义的铬钼钢是指含 Cr0.5%~10%,并含有一些 Mo 的 Cr-Mo 钢,这些元素可以提高钢的 抗腐蚀及抗氧化性能,并提高高温力学性能,不包括公称成分为 12Cr-1Mo-V 的材料。
- 3. 2 综合国内外相关规范中碳钼钢的钼含量: GB 5310 中 15MoG 钼含量为 0. 25%~0. 35%, 20MoG 钼含量为 0. 44%~0. 65%, GB/T 16253 中 ZG19MoG 钼含量为 0. 40%~0. 60%, ASME SA553-P1 钼含量为 0. 44%~0. 65%, ASME SA204Gr.A、SA204Gr.B、SA204Gr.C 钼含量为 0. 41%~0. 64%, 将碳钼钢的钼含量界定在 0. 25%~0. 65%。

4 材料

4.2 钢材

4.2.5 缺陷是不允许存在的,材料表面局部存在缺陷时,应首先考虑更换,如果不进行更换,可以予以消除。但缺陷消除后减薄量不应超过材料厚度负偏差。

6 焊前准备

- 6.1 坡口制备
- 6.1.2 本条文中的冷加工包含砂轮打磨。
- 6.2 组对与定位
- 6.2.6 设计文件另有规定的情况主要是指管道预拉伸、预压缩的情况。
- 6.2.8 组对时的定位焊方式可采用根部定位焊或过桥定位焊。定位焊采用根部定位焊时应使用评定合格的焊接工艺,焊后熔入永久焊缝。定位焊采用过桥定位焊时,根部焊接有充惰性气体保护要求的在过桥定位焊时可不充气保护,但过桥定位焊缝不能熔入永久焊缝,正式焊接前需要将其打磨掉,且不影响永久焊缝的质量。
- 6.2.9 a) 本条文的低碳钢材料是指含碳量与母材相当的碳钢材料。

7 焊接工艺

7.2 焊接材料选用和准备

- 7.2.1 异种铬钼钢和碳钼钢的接头,焊接材料选择可采用如下三种方式之一: (1) 与较低的母材合金成分相当; (2) 与较高的母材合金成分相当; (3) 合金成分介于两者之间。考虑到焊接接头不必比合金成分较低一侧母材具有更强的抗腐蚀或抗高温蠕变能力,多选择与较低的母材合金成分相当的焊接材料。
- 7.2.2 因碳钼钢数量较少,别的标准没有对此进行规定,本规范将碳钼钢列进来,规范名称并没有加碳钼钢,所以正式条文中也不提碳钼钢。
- 7. 2. 4 JB/T 3223 第 9. 2. 4 条明确规定焊接材料制造厂对有烘干要求的焊接材料应提供明确的烘干条件,焊接材料的烘干规范应按照焊接材料说明书的要求确定。随着焊接材料种类越来越多,有些厂家

SH/T 3520-2015

对焊接材料的烘干有较高要求,烘干应首先执行焊材制造厂产品说明书的规定。

7.2.6 本条仅适用检修或抢修过程中不具备热处理条件的情况,且需经设计或建设单位同意。

7.4 焊接

- 7.4.2 通过实验验证,对于公称成分为 9Cr-1Mo 和 9Cr-1Mo-V 的材料,只在底层焊接时背面进行惰性气体保护,焊缝背面存在氧化现象,在根部第二层焊接时背面仍进行惰性气体保护,焊缝背面保护效果较好。API 938B 也有至少焊接两层,方可终止背面惰性气体保护的规定。
- 7.4.5 在焊缝厚度达到 10mm 或壁厚的 25%时再中断焊接,接头具有一定强度,有利于减少裂纹倾向,保证接头质量,ASME B31.1 有相同规定。再次焊接前应检查焊道表面所用到的检查方法为目视检测 (VE)。
- 7.4.6 后热是让扩散氢溢出,减少氢致裂纹的有效措施,保温时间与焊缝金属厚度有关。
- 7.4.7 在焊后热处理之前,焊件冷却到 80℃~100℃范围内,使奥氏体充分转变为马氏体,若奥氏体 在焊后热处理之后转换为马氏体,会导致高硬度。

焊件冷却到80℃~100℃后,如果不能及时进行焊后热处理,需进行后热。

8 焊接检验

8.2 无损检测

8. 2. 3 因 1Cr-0.5Mo-V 和 1. 5Cr-1Mo-V 的焊接接头有再热裂纹倾向,所以对此种钢材增加焊后热处理之后的无损检测要求。检测比例与 SH/T 3554 规定相同。

9 返修

9.1 返修时, 缺陷清除过程可用表面无损检测的方法确认缺陷清除程度, 此时不需检测报告。

10 焊后热处理

- 10.2 如两种耐热钢之间热处理温度相差较大,还应保证热处理温度不能超过合金含量低者的上限。
- 10.7 表 10.7 的硬度要求参照 ASME B31.3 的规定,对于 9Cr-1Mo-V 硬度的要求是参照 API938B 的要求,在生产中,对于工艺和公用物料的硬度要求有所不同。